60 research outputs found

    Online detection and quantification of epidemics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Time series data are increasingly available in health care, especially for the purpose of disease surveillance. The analysis of such data has long used periodic regression models to detect outbreaks and estimate epidemic burdens. However, implementation of the method may be difficult due to lack of statistical expertise. No dedicated tool is available to perform and guide analyses.</p> <p>Results</p> <p>We developed an online computer application allowing analysis of epidemiologic time series. The system is available online at <url>http://www.u707.jussieu.fr/periodic_regression/</url>. The data is assumed to consist of a periodic baseline level and irregularly occurring epidemics. The program allows estimating the periodic baseline level and associated upper forecast limit. The latter defines a threshold for epidemic detection. The burden of an epidemic is defined as the cumulated signal in excess of the baseline estimate. The user is guided through the necessary choices for analysis. We illustrate the usage of the online epidemic analysis tool with two examples: the retrospective detection and quantification of excess pneumonia and influenza (P&I) mortality, and the prospective surveillance of gastrointestinal disease (diarrhoea).</p> <p>Conclusion</p> <p>The online application allows easy detection of special events in an epidemiologic time series and quantification of excess mortality/morbidity as a change from baseline. It should be a valuable tool for field and public health practitioners.</p

    Humoral immune response and delayed type hypersensitivity to influenza vaccine in patients with diabetes mellitus

    Get PDF
    The antibody response and delayed type hypersensitivity reaction to commercially available trivalent influenza vaccine in 159 patients with diabetes mellitus was compared with response and reaction in 28 healthy volunteers. A correction for prevaccination titres was made. No differences were found between diabetic patients and control subjects with respect to antibody response to the three vaccine strains as measured by the difference between geometric mean titres of post- and prevaccination sera. In Type 1 (insulin-dependent) diabetic patients the incidence of non-responders to two vaccine components was significantly increased (p less than 0.05). The delayed type hypersensitivity reaction to influenza antigen was significantly decreased in patients with high concentrations of glycosylated haemoglobin (p less than 0.01). These findings suggest a role for impaired immune response in the increased influenza morbidity and mortality in patients with diabetes mellitus. Implications for therapy and vaccination strategy are discussed

    Revised estimates of influenza-associated excess mortality, United States, 1995 through 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excess mortality due to seasonal influenza is thought to be substantial. However, influenza may often not be recognized as cause of death. Imputation methods are therefore required to assess the public health impact of influenza. The purpose of this study was to obtain estimates of monthly excess mortality due to influenza that are based on an epidemiologically meaningful model.</p> <p>Methods and Results</p> <p>U.S. monthly all-cause mortality, 1995 through 2005, was hierarchically modeled as Poisson variable with a mean that linearly depends both on seasonal covariates and on influenza-certified mortality. It also allowed for overdispersion to account for extra variation that is not captured by the Poisson error. The coefficient associated with influenza-certified mortality was interpreted as ratio of total influenza mortality to influenza-certified mortality. Separate models were fitted for four age categories (<18, 18–49, 50–64, 65+). Bayesian parameter estimation was performed using Markov Chain Monte Carlo methods. For the eleven year study period, a total of 260,814 (95% CI: 201,011–290,556) deaths was attributed to influenza, corresponding to an annual average of 23,710, or 0.91% of all deaths.</p> <p>Conclusion</p> <p>Annual estimates for influenza mortality were highly variable from year to year, but they were systematically lower than previously published estimates. The excellent fit of our model with the data suggest validity of our estimates.</p

    Population mortality during the outbreak of Severe Acute Respiratory Syndrome in Toronto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Extraordinary infection control measures limited access to medical care in the Greater Toronto Area during the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak. The objective of this study was to determine if the period of these infection control measures was associated with changes in overall population mortality due to causes other than SARS.</p> <p>Methods</p> <p>Observational study of death registry data, using Poisson regression and interrupted time-series analysis to examine all-cause mortality rates (excluding deaths due to SARS) before, during, and after the SARS outbreak. The population of Ontario was grouped into the Greater Toronto Area (N = 2.9 million) and the rest of Ontario (N = 9.3 million) based upon the level of restrictions on delivery of clinical services during the SARS outbreak.</p> <p>Results</p> <p>There was no significant change in mortality in the Greater Toronto Area before, during, and after the period of the SARS outbreak in 2003 compared to the corresponding time periods in 2002 and 2001. The rate ratio for all-cause mortality during the SARS outbreak was 0.99 [95% Confidence Interval (CI) 0.93–1.06] compared to 2002 and 0.96 [95% CI 0.90–1.03] compared to 2001. An interrupted time series analysis found no significant change in mortality rates in the Greater Toronto Area associated with the period of the SARS outbreak.</p> <p>Conclusion</p> <p>Limitations on access to medical services during the 2003 SARS outbreak in Toronto had no observable impact on short-term population mortality. Effects on morbidity and long-term mortality were not assessed. Efforts to contain future infectious disease outbreaks due to influenza or other agents must consider effects on access to essential health care services.</p

    Identification of conserved gene clusters in multiple genomes based on synteny and homology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncovering the relationship between the conserved chromosomal segments and the functional relatedness of elements within these segments is an important question in computational genomics. We build upon the series of works on <it>gene teams</it> and <it>homology teams.</it></p> <p>Results</p> <p>Our primary contribution is a local sliding-window SYNS (SYNtenic teamS) algorithm that refines an existing family structure into orthologous sub-families by analyzing the neighborhoods around the members of a given family with a locally sliding window. The neighborhood analysis is done by computing conserved gene clusters. We evaluate our algorithm on the existing homologous families from the Genolevures database over five genomes of the Hemyascomycete phylum.</p> <p>Conclusions</p> <p>The result is an efficient algorithm that works on multiple genomes, considers paralogous copies of genes and is able to uncover orthologous clusters even in distant genomes. Resulting orthologous clusters are comparable to those obtained by manual curation.</p

    Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans

    Get PDF
    Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans

    Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load

    Get PDF
    HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases
    corecore